Climate Variability, Hydrology, and Flooding

Introduction to NASA Remote Sensing Missions, Earth System Models, and Data Access Tools Relevant for Monitoring Climate Variability and Flooding

Objective

To introduce NASA satellite missions and Earth Science (ES) Models, and Data Access Tools used in this Training on Climate, Hydrology, and Flood (CHF) Monitoring

Outline

- Geophysical Quantities used for Climate, Hydrology, and Flood (CHF) Monitoring
- NASA Satellite Missions for CHF Monitoring
- NASA Earth Systems Models for CHF Monitoring
- Data Search, Access, Analysis, and Visualization
 Tools Focus Giovanni

Geophysical Quantities Used for Climate, Hydrology, and Flood (CHF) Monitoring

The Climate and Hydrologic System

Geophysical Quantities and Units used for CHF Monitoring

Solar and Terrestrial Radiation	(Watts/m²)
Surface Temperature	(Celsius or Kelvin)
□ Rain	(mm/unit time or kg/m²/s)
■ Soil Moisture	(m ³ /m ³ or g/m ²)
□ Snow/Ice	(% area cover, mm/hour)
Terrain	(vertical meter)
Ground Water	(m ³ or km ³)
Land Cover	(Type of Land, e.g. water, forest, grass)
Evapotranspiration	(mm/s or kg/m ² /s)
Run off/Streamflow	(mm/s or kg/m ² /s)
Winds	(m/s)
Specific Humidity	(g/kg)
Clouds	(% area cover)

NASA Earth Science Provides All the Geophysical Quantities for CHF Monitoring

Solar and Terrestrial Radiation
Rain
Surface Temperature
Soil Moisture
Snow/Ice
Clouds, Humidity
Terrain
Ground Water
Land Cover
Evapotranspiration
Run off/Streamflow
Winds

All these quantities are available from NASA satellite observations as well as from atmosphere-land models

Quantities in green are derived from satellite observations

Quantities in red are from land and atmosphere-land models in which satellite observations are assimilated

NASA Earth Science Provides All the Geophysical Quantities for CHF Monitoring

- Solar and Terrestrial Radiation
- Rain
- Surface Temperature
- Soil Moisture
- Snow/Ice
- ☐ Clouds, Humidity
- Terrain
- Ground Water
- Land Cover
- Evapotranspiration
- Run off/Streamflow
- Winds

This training will focus on these parameters

All these quantities are available from NASA satellite observations as well as from atmosphere-land models

Quantities in green are derived from satellite observations

Quantities in red are from land and atmosphere-land models in which satellite observations are assimilated

NASA Satellite Missions for CHF

NASA Earth Observing Satellites for CHF

TRMM: Tropical Rainfall Measuring Mission

GRACE: Gravity Recovery and Climate Experiment

GPM: Global Precipitation Measurements

SMAP: Soil Moisture Active Passive

Landsat (07/1972-present)

TRMM (11/1997-4/2015)

GPM (2/27/2014-present)

Terra (12/1999-present)

Aqua (5/2002-present)

SMAP (1/31/2015-present)

GRACE (3/2002-present)

NASA Earth Observing Satellites for CHF Monitoring

- Each satellite carries one or more sensors/instruments with specific spectral channels to observe specific geophysical quantities
- Sensors most used for the CHF monitoring will be described throughout this training

Landsat (07/1972-present)

TRMM (11/1997-04/2015)

GPM (2/27/2014-present)

Terra (12/1999-present)

Aqua (5/2002-present)

SMAP (1/31/2015-present)

GRACE (3/2002-present)

Landsat (07/1972 – Present)

http://landsat.gsfc.nasa.gov/

Continuous mission with multiple satellites, Landsat-1 launched in July 23, 1972

- Near-polar orbit, 10 am equator-crossing time
- Global coverage
- July 1972- Present,16-day revisit time
- Sensors: MSS,TM, ETM+,OLI, TIRS

Quantities:

Land Cover

TRMM (11/1997 - 4/2015)

http://trmm.gsfc.nasa.gov

TRMM stopped collecting data in April 2015

Quantities: Surface Rainfall Rainfall Profiles Latent Heating

- A non-polar, low inclination orbit
 Revisit time ~11-12 hours, but time
 of the observation changes daily
- There are 16 TRMM orbits a day covering global tropics between 35° S to 35°N latitudes
- Sensors

Precipitation Radar (**PR**)*
TRMM Microwave Imager (**TM**I)
Visible and Infrared Scanner (**VIRS**)

Important Note:

TRMM mission was terminated in April 2015 but near-real time TRMM-calibrated rainfall from other satellites are available until GPM data become available in near-real time

TRMM data from 1997-2014 are widely used for weather, climate, and hydrology applications and will be used in this

GPM (2/2014 – Present)

http://pmm.nasa.gov/GPM

GPM near-real time data will be available in 2016

- Non-polar, low inclination orbit with 16 orbits per day
- GPM observes global region between 65°S to 65°N latitudes
- Sensors:

Dual frequency Precipitation Radar (D**PR**) GPM Microwave Imager (**GM**I)

the area covered by three TRMM orbits [yellow] versus orbits of the GPM Core Observatory [blue]

Quantities:

Surface Precipitation (Rain and Snow) Precipitation Profiles

Terra (12/1999 – Present)

http://terra.nasa.gov

Quantities:

Land Cover
Snow Cover
Clouds
Water VApor
Radiative Fluxes
Aerosol Information
Digital Elevation

- Polar, Sun-Synchronous Orbit, Global Coverage
- Twice-daily Observations 10:30 AM/ PM Descending Orbits

Sensors:

- <u>Moderate Resolution Imaging</u>
 <u>Spectroradiometer</u> (**MODIS**)
- Advanced Spaceborne Thermal <u>Emission</u> and Reflection <u>Radiometer (ASTER)</u>
- Clouds and Earth's Radiant Energy System (CERES)
- <u>Multi-angle Imaging Spectroradiometer</u> (MISR)
- <u>Measurements of Pollution in the</u>
 <u>Troposphere</u> (MOPITT)

Aqua (5/2002 – Present)

http://aqua.nasa.gov

- Polar, Sun-Synchronous Orbit, Global Coverage
- Twice-daily Observations 1:30 AM/
 PM Descending Orbits
- Sensors:
 - <u>Moderate Resolution Imaging</u>
 <u>Spectroradiometer</u> (MODIS)
 - Atmospheric Infrared Sounder (AIRS)
 - Advanced Microwave Sounding Unit (AMSU-A)
 - Advanced Microwave Scanning Radiometer for EOS (AMSR-E)
 - Clouds and the Earth's Radiant Energy System (CERES)

SMAP (1/2015 – Present)

http://smap.jpl.nasa.gov

- Polar, Sun-Synchronous Orbit, Global Coverage
- Twice-daily Observations 6:00 AM/PM Equator Crossing
- Sensors:

Microwave Radiometer
Microwave Radar

Quantities:

Soil Moisture

Freeze-Thaw State

GRACE (3/2002 – Present)

http://www.jpl.nasa.gov/missions/details.php?id=5882

- Polar, Sun-Synchronous Orbit, Global Coverage
- 250 gravity profiles per day
- Sensors:

Microwave K-band ranging instrument Accelerometers Global Positioning System Receivers

Quantity:

Terrestrial Water

NASA Earth System Models for CHF Monitoring

Models Provide Value-added Information

Remote Sensing + Surface Observations + Numerical Models

Satellite Data

Surface Measurements and In-Situ Data

Numerical Models

Modeling of the atmosphere-Land-Ocean Systems

- Models use the Laws of physics in terms of mathematical equations to represent the atmosphere, ocean, and land systems
- Applied on horizontal and vertical grids by using numerical methods
- Models use observations to represent the atmosphere-ocean-land system at a given time to deduce how the system will evolve over space/time
- Models use physical/statistical/empirical techniques to represent environmental processes

NASA Models for CHF Monitoring

(Atmosphere-Ocean-Land Models)

➤ GEOS-5: The Goddard Earth Observing System Version 5

MERRA: Modern Era Retrospective-analysis for Research and Application

GLDAS: Global Land Data Assimilation System

NLDAS: North American Land Data Assimilation System

MERRA

http://gmao.gsfc.nasa.gov/merra/

Blends the vast quantities of observational data with output data of the Goddard Earth Observing System (GEOS) model [1979-present]

Current satellite coverage assimilated in MERRA

Global Land Data Assimilation System (GLDAS)

GOAL: Integrate ground and satellite observations within sophisticated numerical models to produce physically consistent, high resolution fields of land surface states (e.g., snow) and fluxes (e.g., evaporation)

Parameter Inputs

Satellite Based Forcing

PRECIPITATION

2 5 10 25 50 100

AVAILABILITY: Output from 1979present simulations of Noah (1/4°; 1°),
CLM (1°), and Mosaic (1°), and VIC
(1°), are available at
http://disc.gsfc.nasa.gov/hydrology/index.shtml

climate forecast initialization studies, water resources

USES: Weather and

applications, hydrometeorological investigations

Integrated Output

Soil Moisture Evapotranspiration Runoff Snow Water Equivalent

Assimilated Observations

Courtesy Matt Rodell,

NASA-GSFC

http://ldas.gsfc.nasa.gov/

Quantities Available from Models for CHF Monitoring

Models	Quantities
MERRA	3-dimensional Winds, Temperature, Humidity, Clouds, Rain Rate ,Snow Mass, Snow Cover, Snow Depth, Surface Snowfall Rate, Evapotranspiration
GLDAS	Multi-layer Soil Moisture Evapotranspiration, Rainfall, Snowfall, Snow Melt, Snow-Water Equivalent, Surface and Sub-surface Runoff

This Training will Focus on the Following Geophysical Quantities for CHF Monitoring

Surface Temperature	(Aqua/AIRS)
□ Rain	(TRMM, GPM)
■ Soil Moisture	(GLDAS, SMAP)
Snow Cover	(Terra and Aqua MODIS)
Terrain	(Shuttle Radar Topography Mission)
Land Cover, Inundation	(Terra and Aqua MODIS)
Run Off/Streamflow	(TRMM)
Winds	(MERRA)

Data Search, Access, Analysis, and Visualization Tools

There are Multiple Web-based Tools for CHF Data Search, Analysis, and Download Options

Mirador For Most CHF Data Access

Giovanni-4: Geospatial Interactive Online Visualization ANd

aNalysis Infrastructure

Selected Data Access

PPS-STORM: Precipitation Processing Systems - Science Team

On-Line Request Module (STORM)

Precipitation Data Access

NSIDC: National Snow and Ice Data Center and JPL Snow

Server

Snow and Soil Moisture Data Access

Reverb-ECHO Selected Data Access

Overview of the Data Tools

Tools	Data Formats	Analysis and/or Visualization	Data Download
Mirador http://mirador.gsfc.nasa.gov	HDF5, OPenDAP (can be converted to ASCII, Binary, NetCDF)	N/A	Batch Download
Giovanni http:// giovanni.gsfc.nasa.gov/ giovanni/	NetCDF, GeoTIFF, PNG	Visualization: Map, Time Series, Scatter Plot Histogram Analysis: Time-averaged Maps, Time Series, Scatter Plot, Map Correlations, Vertical Profiles, Time- averaged Differences	Download by Select and Click on Data Files
PPS/STORM https:// storm.pps.eosdis.nasa.gov/ storm	HDF5, PNG	Map Visualization, Interactive Latitude/Longitude Point Data Value Display	FTP

Overview of the Data Tools

Tools	Data Formats	Analysis and/or Visualization	Data Download
NSIDC http://nsidc.org/	HDF5, GeoTIFF,, Binary (Data Product Dependent)	Data Search And Images	FTP Download Via Reverb
Reverb-ECHO http://reverb.echo.nasa.gov/reverb	HDF, Image	Map Visualization	Batch Download Possible

Overview of Giovanni

Geospatial Interactive Online Visualization ANd aNalysis Infrastructure

What is Giovanni?

http://disc.sci.gsfc.nasa.gov/giovanni/overview/what-is-giovanni

- Giovanni is an acronym for the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure
- Giovanni is a Web-based application developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC)
- Giovanni provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data

User-Selected Map from Giovanni

User-Selected Map from Giovanni

User-Selected Map from Giovanni

Map for User-Selected Shapefile

Map for User-Selected Watershed

Area-averaged Time Series Plot

Map for User-Selected Watershed

Next:

Hands-on Activity to access and visualize rainfall using Giovanni